Modelling of Electrohydraulic System Using RBF Neural Networks and Genetic Algorithm

نویسندگان

  • Guoqiang Cai
  • Zhongzhi Tong
  • Zongyi Xing
چکیده

This paper presents an approach to model the nonlinear dynamic behaviors of the Automatic Depth Control Electrohydraulic System (ADCES) of a certain mine-sweeping weapon using Radial Basis Function (RBF) neural networks. In order to obtain accurate RBF neural networks efficiently, a hybrid learning algorithm is proposed to train the neural networks, in which centers of neural networks are optimized by genetic algorithm, and widths and centers of neural networks are calculated by linear algebra methods. The proposed algorithm is applied to the modelling of the ADCES, and the results clearly indicate that the obtained RBF neural network can emulate the complex dynamic characteristics of the ADCES satisfactorily. The comparison results also show that the proposed algorithm performs better than the traditional clustering-based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of the Automatic Depth Control Electrohydraulic System Using RBF Neural Network and Genetic Algorithm

The automatic depth control electrohydraulic system of a certain minesweeping tank is complex nonlinear system, and it is difficult for the linear model obtained by first principle method to represent the intrinsic nonlinear characteristics of such complex system. This paper proposes an approach to construct accurate model of the electrohydraulic system with RBF neural network trained by geneti...

متن کامل

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

Modelling and Identification of Electrohydraulic System and Its Application

In general, the first and the most important step in system analysis, prediction and control is the proper model of the system. In order to design the controller of nonlinear electrohydraulic system, several modeling techniques are proposed: the transfer function of the electrohydraulic system is identified using first-principle method, and the intelligent models are built by fuzzy modeling and...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCIT

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010